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of one study that discussed differences across race or
ethnicity [14]. Traxler and Brewe [14] found gender and
ethnic differences favoring men and overrepresented eth-
nicities (i.e., Asian and White [34]). They also found
Modeling Instruction, an evidence based pedagogy with a
focus on developing student attitudes, supported women and
BIPOC students in developing more expertlike attitudes.

The disparities in outcomes for women and BIPOC
students in physics courses result from systemic barriers in
physics education. These barriers perpetuate the educa-
tional debts society owes these students [35]. Society has
accrued educational debts that it owes to minoritized
students through historical, sociopolitical, economic, and
moral forms of inequalities [36]. In this investigation we
examined an avenue by which the racist and sexist power
structures within university physics courses perpetuate and
increase the educational debts society owes women and
BIPOC students through the denial of opportunities and
resources to develop as physicists [10,37]. To better
understand the role of attitudes in the lack of diversity
in physics, we used a critical quantitative framework
(QuantCrit) [38] to investigate the intersecting relationships
between racism and sexism in inequities in student attitudes
about learning and doing physics. We modeled society’s
educational debts due to racism, sexism, and their inter-
section in a multi-institutional dataset (18 institutions and
95 courses) collected using the Colorado Learning
Attitudes about Science Survey (CLASS) [11] using
hierarchical models. Our QuantCrit framework guided
our work in an attempt to be antiracist and antisexist
and counter racist and sexist uses of quantitative research in
the past and present.

Il. RESEARCH QUESTIONS



for their male peers decreased from before to after
instruction in both courses. Good and colleagues’ study
differs from other referenced work because it focused
explicitly on attitudes toward problem solving.

B. Sexism in physics

Significant research efforts have focused on understand-
ing the low representation of women in physics, which has
remained at approximately 20% for the last 40 years [44].
Cheryan et al. [10] reviewed the literature on gender
differences across the science, technology, engineering,
and mathematics (STEM) domains and found that mascu-
line cultures, gender differences in self-efficacy, and a
lack of early educational experiences in the disciplines
explained the lower rates of participation for women in
physics, computer science, and engineering compared to
biology, chemistry, and mathematics. Work in physics
education research on gender differences in physics paral-
lels Cheryan and colleagues findings. Madsen et al. [8]
reviewed 26 studies on gender differences for conceptual
learning in introductory physics courses. In first semester



prove their skills to their peers and supervisors as well as
often being viewed as “too smart” by family and friends.
Clancy et al. [53] found that women of color uniquely faced
barriers in astronomy and planetary sciences that White
women did not face.

IV. CONCEPTUAL FRAMEWORK

Critical race theory (CRT) began in the 1970s and 1980s
as a movement among a racially diverse group of U.S. legal
scholars of color to address social injustices and racial
oppression [54-56]. CRT explicitly assumes racism is
ingrained in our institutional structures, focuses on the
narratives and counternarratives of oppressed people, and
identifies the importance of interest convergence between
oppressed peoples and their oppressors in creating change
[57,58]. Ladson-Billings [59] provides affirmative action as
apoor example of interest convergence. Affirmative action is
under ongoing attack as a benefit for Black, Indigenous, and
people of color and is associated with primarily benefiting
Black, Indigenous, and people of color. Affirmative action in
higher education, however, has primarily benefited White
women [60]
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We strive to clarify that our models are not meas-
uring innate differences in students based on their
race or gender, but the impacts of multidimensional
oppressive power structures on students margin-
alized by these social constructs. One way that we
reflect this in our writing is through the explicit
naming of racism and sexism in interpreting our
models.

Data are not neutral and cannot speak for them-
self.—We reject the idea that data are neutral and
can speak for themself. Hegemonic assumptions
can shape every stage of collecting, analyzing,
and interpreting data [69]. For example, the data
we analyzed in this investigation came from the
Learning About STEM Student Outcomes (LASSO)
platform. While the LASSO platform has been
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equity, diversity, and access. They summarize the equity
orientations as either (i) creating new opportunities for
students from historically [87] marginalized groups but not
altering the status quo of what doing science in a field
means or (ii) opening new possibilities for societal trans-
formation around what it means to do science, but are less
likely to impact students achievement in school directly.
Philip and Azevedo [86] call on researchers to define the
equity orientation their work uses.

In this article, our orientation emphasizes supporting
students now over transforming what it means to do physics
and who gets included in physics. We emphasize support-
ing students now because we feel the subset of attitudes we
focus on are good outcomes in physics courses and
individual instructors can enact changes in their classrooms
to make these changes happen now. The scientific literature
contains multiple examples of pedagogies individual
instructors can use in their courses to support students in
developing the attitudes they need to succeed in physics [8].
Using pedagogies that support attitude development of
students from historically marginalized groups can create
interest convergences because they may also improve
overall recruitment and retention of physics majors in their
department. Many cultural attitudes in physics (e.g., com-
petition, individualism, and solitary practice) are more
costly for women and BIPOC students to adopt [29,39].
Our focus, however, is on pedagogies that support students
in seeing physics as applicable to their lives, as under-
standing that physics is more than plugging numbers into
the right equations, and feeling capable of learning and
doing physics. We pursue these goals in our own courses.
By enacting these changes now, we expand the foundation
for redefining what it means to learn and do physics in two
ways. First, we support physics educators in reflecting on
and changing their pedagogical practices. Second, we
support more students from historically marginalized
groups becoming physicists. These two groups of physi-
cists may support the broader physics community in
transforming what it means to learn and do physics to
create a more inclusive culture in physics.

D. Positionality

Feminist theory has shown that all knowledge is marked
by those who create it [88]. To be transparent about the
position of the researchers in this work in relation to the
power structures under investigation, we offer positionality
statements [65] for each of the authors.

The following is the first author’s, J. N., positionality
statement. My identity as a White, cisgendered, heterosex-
ual, nondisabled man has provided me with power and
opportunities denied to others in American society. | use
my experience growing up in a poor home and as a veteran
of the all-male submarine service to motivate reflecting on
and working to dismantle my privilege. My work on this
project was shaped by the post-positivist scientific

traditions | was educated in and my activist goal to pursue
scientific knowledge that can help identify and dismantle
policies and systems of oppression. Because of the privi-
lege implicit in my current identities, | brought a limited
perspective to this work on racism and sexism.

The following is the second author’s, 1. Her Many
Horses, positionality statement. | identify as a Lakota
(Indigenous), cisgender, heterosexual, man and was raised
on the Rosebud Reservation in South Dakota. | consider
myself to be educationally privileged and am a third
generation college student with many family members
holding terminal degrees. | hold an undergraduate degree
in computer science and a Ph.D. in education. Throughout
my life | am usually the only person that looks like me
anywhere | go. These experiences have driven me to use my
own power to address issues of equity in whatever space |
find myself.

The following is the third author’s, B. V D., positionality
statement. | identify as a White, cisgender, heterosexual,
man with a color vision deficiency. | was raised in a pair of
lower-income households but | now earn an upper-middle
class income. | hold an undergraduate degree in physics
and a Ph.D. in education. | am an assistant professor at a
Hispanic serving institution. My experiences working with
marginalized students, particularly those whom | have had
the honor to mentor as learning assistants [89] and as
researchers, has motivated my attempts to use my position
and privilege to dismantle oppressive power structures. As
someone who seeks to be an ally, it is easy to overlook my
own privileges. | try to broaden my perspective through
feedback from those with more diverse lived experiences
than my own.

V. METHODS

A. Instrument

We used data collected with the Colorado Learning
Attitudes about Science Survey [11] for this study.
Researchers and educators commonly measure attitudes
in college physics courses using either the CLASS or the
Maryland Physics Expectations Survey (MPEX) [90]. The
surveys ask students about several different categories of
attitudes about physics, such as the relationship between
learning physics and everyday life, the effort they put into
learning physics, and their approach to solving physics
problems. Students respond to these questions on a five-
point Likert scale from strongly agree to strongly disagree.
Researchers use the instruments to create an overall score
and a score for each of the categories of attitudes based on
how many times the students agree or strongly agree with
what expert physicists reported [11,40].

The CLASS is the most commonly used measure of
attitudes and attitudes about learning and doing physics
[33]. However, some researchers have raised questions
about what the CLASS measures and how the CLASS is






We scored the CLASS responses using the agree
categories recommended by the original authors and we
only analyzed the total score of the 36 items they include in
their total scores [11]. We followed their original scoring
recommendations so our results would be comparable to
prior research using the CLASS. Adams et al. [11] recom-
mends not including 6 of the 42 items in the total score. One
excluded item is a filter question. Experts did not consis-
tently agree on four of these items. Two items ask about the
nature of science and two others ask about learning styles.
The final excluded item also asks about approaches to
learning but is not discussed by Adams et al. [11]. These
excluded items and the extensive process Adams et al. [11]
details illustrate that expert’s attitudes vary.

To clean the data, we removed the pretest or post-test
score if the student took less than 3 min on the assessment
or incorrectly answered the filter question [11]. We
removed any courses with less than 5 pretests or 5 post-
tests. After cleaning the data, we used hierarchical multiple
imputation (HMI) with the hmi [102] and mice [103]
packages in RStudio V. 1.1.456 to impute missing data. We
only imputed values for missing pretest and post-test
CLASS scores, and we did not impute missing values
for gender and race to respect each student’s choice to not
answer these questions. HMI provided a principled method
for handling missing data that maximized statistical power
and minimized bias while accounting for the hierarchical
structure of the data [73,104-107].

The imputed dataset included 7764 students. This
imputed dataset was larger than the 4673 students used
in the analysis because it included students enrolled in a
variety of courses: first and second semester algebra and
calculus based physics courses, LA pedagogy courses,
upper division physics courses, and physics courses for
education majors. The rate of missing data for this dataset
was 17% on the pretest and 34% on the post-test. The
imputation model included a dependent variable for the
post-test and accounted for the pretest score, course type,
and demographic variables and nested the students within
courses. The subsequent analysis only included 4673
students enrolled in first-semester algebra-based and cal-
culus-based introductory physics courses.

C. Model building

To investigate student attitudes, we developed models to
predict student attitudes on the pretest and post-test and in
algebra-based and calculus-based first-semester physics
courses separately, which are described by CLASS;; in
the final model. The models were 2-level hierarchical linear
models with student data in the first level and course data
in the second level. Using hierarchical linear models
accounted for the nested nature of the data [108,109].
We ran the models and pooled the results for the imputed
datasets using the mitml



To determine what demographic variables to include in
the models, we first used a rule of thumb to only investigate
scores for populations with at least 20 students total [113].
This meant that we did not include variables for trans-
gender, Hawaiian or Pacific Islander, or Native American in
our models. Because removing the students with these
identities could have biased the course-level results and
because some students did not include a gender or race, we
combined these students into two categories: gender other
and race other. This meant that the final variables used in
our model, which is shown above, included woman, gender
other, Black, Asian, Hispanic, White, and race other. We
included interactions between variables whenever a pop-
ulation included more than 20 students but not for the race
other and gender other groups. Hispanic is often treated as
an ethnicity in the United States [114]. However, 67% of
Hispanic Americans consider their Hispanic identity to be a



E. Interpreting results

We do not present p values. p values depend on sample
size and lead to selective reporting and selective attention
[80] that can ignore injustices borne by the most under-
represented and marginalized groups of students. Our
analysis, instead, focused on the point estimates and
standard errors produced by the models. This decision
was informed by our QuantCrit perspective, which pushed
us to question common statistical practices, and aligns with
recommendation from the American Statistical Association
in response to scientists and scientific communities misuses
of p values



attitudes in the calculus-based courses varied across dem-
ographic groups and ranged from —0.1 to —5



educational debt owed due to sexism across races. Figure 2



between White women and women of color were smaller
than the uncertainty in the measurements. However, in both
courses society owed the greatest educational debt to Black
women whose predicted average attitudes were 8.1 to 12.5
percentage points lower than the predicted average attitudes
for White men. To interpret the size of these differences in
the context of becoming a physics major, we explore the
proportion of students from each race and gender above
the 75% threshold of attitudes held by most physicists in
the next section.

B. Proportion of students above 75%

As we described in the methods section, Table IV and
Fig. 3 represent the results of the hierarchical generalized
linear models predicting the proportion of students from
each demographic group who scored above 75% on the
pretest. Seventy-five percent provided an estimated cutoff
for the attitudes students need prior to taking their first
college physics course to have a reasonable chance of
becoming a professional physicist.

The results of the hierarchical generalized linear models
showed society owed educational debts to women and
BIPOC students. The proportion of students making the
75% cutoff ranged from a low of 7% for Black women in
algebra-based courses to a high of 36% for White men in
calculus-based courses. Across all groups except Hispanic
students in calculus-based courses the models predicted
men to be above the threshold more often than women.
In 6 of 10 comparisons, these raw differences were large.
In both course types, we measured a 13 percentage point
gender difference for Black students and an 8 percentage
point gender difference for Asian students. In calculus-
based physics courses we measured an 8 percentage point
gender difference for White students and White Hispanic
students. These gender differences meant Black men were
more than twice as likely to be above the threshold
than Black women (7% versus 20%). In the two cases
where the absolute difference was smaller, for example,

a 3 percentage point difference for White students in
algebra-based courses, the relative difference was still
large. White men were 1.2 times as likely to be above
the threshold than White women in algebra-based physics
courses. Most of these gender differences were much larger
than the uncertainties in the measurement and the consis-
tent gender difference across 9 of the 10 comparisons
indicated society owed educational debts to women
whereby men are 20% to 290% more likely to meet the
threshold of









convergence. The physics community should attend to
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includes violin plots, box plots, and jittered scatter plots.  standard errors from either descriptive statistics or statis-
These figures used the average values for each student for  tical models can reinforce. In other words, the data show
all ten imputed datasets. We included these plots because  differences in the mean scores between groups (intergroup
they provide data transparency for readers and because they ~ variance) but the spread of scores within each group
break down the “gap gazing” perspective that means and  (intragroup variance) is much larger, which is shown by
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TABLE VI. Hierarchical linear model coefficients and standard errors for predicted average attitudes.
Algebra-based Calculus-based
Pre Post Pre Post

p SE p SE p SE p SE
Intercept 59.6 4.7 60.6 5.2 61.9 4.0 62.6 4.4
Gender other -1.3 3.2 1.9 34 =55 3.0 -4.5 3.6
Hispanic -4.0 4.4 -6.0 5.0 -3.4 3.7 =75 4.1
White -0.2 4.7 -0.8 5.2 51 3.9 2.0 45
Women -2.9 2.2 -1.8 2.6 -0.9 2.2 -1.4 2.9
Black -4.8 5.2 =51 5.5 -0.5 4.1 —-6.1 5.0
Asian -22 4.7 -5.8 5.3 -1.6 4.0 =35 4.6
Race other =33 4.6 -5.6 5.1 0.0 4.0 -1.6 4.7
Hisp.*White 0.3 4.4 2.1 49 0.9 3.7 4.1 4.4
Women*Black -0.6 3.7 -5.0 44 -2.7 3.8 =29 4.7
Women*Asian -0.9 2.8 0.1 3.1 =32 2.7 -1.6 34
Women*Hispanic 1.3 2.1 2.8 2.4 -1.4 2.1 0.4 2.7
Women*White -0.2 2.2 -3.1 2.7 -22 2.3 -23 2.9

the overlap in the distributions across all groups. Across all
the plots in Fig. 4, several features are worth noting:
differences but not gaps across groups, medians that tend
to be above 50%, and a negative skew (downward) for
many of the distributions.

B. Model outputs

Tables VI and VII present the model outputs for all
models presented in the article. Table VI presents the model
coefficients and standard errors used to generate the
predicted average attitudes. Table VII presents the model
coefficients and standard errors in logits, which we con-
verted to probabilities for the proportions of students above
the 75% cutoff.

C. Assumption checking

We are unaware of any single uniformly agreed to
method for pooling the test results of the assumption

TABLE VII. Hierarchical generalized linear model outputs for
the pretest 75% cutoff models.

Algebra-based  Calculus-based

Race Gender Est. SE Est. SE
Asian Women -2.13 0.20 —1.86 0.25
Men —1.50 0.21 —-1.31 0.17

Black Women -2.61 0.43 -2.27 0.55
Men —1.41 0.40 -1.27 0.33

Hispanic Women —2.50 0.41 —1.80 0.37
P Men 218 041 —193 028

. Women —1.58 0.11 -0.92 0.15
White Men  —138 011 -056 0.1
. . . Women -2.26 0.30 —1.43 0.32
White Hispanic o™ 167 020 098  0.20

checking for multilevel models when researchers use
multiple imputation [108]. We performed the assumption
checks using each imputed dataset. We present the results
for the assumption checking using the pooled dataset made
by averaging all of the imputed datasets. The pooled dataset
on its own should not be used for checking the assump-
tions. We are, however, using it because our conclusions
across all of the imputed models aligns with the results
from the pooled data and to greatly simplify presentation of
the assumption checking. To test the assumption of
linearity, we plotted the residual variance against the fitted
values, shown in Figs. 5 and 6. In our visual inspection of
the figures we saw no obvious trends and concluded that
the model met the assumption of linearity. To test for
homogeneity of variance we created a box plot of the
residuals across courses, shown in Figs. 5 and 6, and
performed an ANOVA of the residuals across courses. A
visual inspection of the box plot showed the courses’
residuals had consistent medians and interquartile ranges
and therefore met the assumption of homogeneity of
variance. The ANOVA supported our visual check because
it did not find a statistically significant difference
(p > 0.05) in the variances across courses. Finally, we
visually checked the assumption of normality of residuals
using a qq plot of the observed and expected values, shown
in Figs. 5 and 6. The small negative curvature in the qq
plots indicated a small leftward skew in the residuals
indicating there are more large negative residuals than a
normal distribution would produce. This likely occurred
because the data, as shown in the violin plots Fig. 4 tends to
have a slight left (down) skew. Hence the model is
overdriven by lower test scores. Gelman and Hill [125]
point out that meeting the assumption of normally distrib-
uted residuals is of little importance to the regression line.
The small skew in the residuals could have a very small
effect on the standard errors. We expect that this skew had

010116-18



no effect on our conclusions for two reasons. First, the
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